By Topic

A batch algorithm using iterative application of the Viterbi algorithm to track cells and construct cell lineages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Magnusson, K.E.G. ; Signal Process. Lab., KTH R. Inst. of Technol., Stockholm, Sweden ; Jalden, J.

Advances in microscope hardware in the last couple of decades have made it possible to acquire large data sets with image sequences of living cells grown in cell culture. This has led to a demand for automated ways of analyzing the acquired images. This article presents a new algorithm for tracking cells and constructing cell lineages in such image sequences. The algorithm uses information from the entire sequence to make local decisions about cell tracks and can therefore make more robust decisions than algorithms that process the data sequentially. It also incorporates image-based likelihoods of cell division and cell death into the tracking, without having to resort to separate detection algorithms or post processing of tracks. The algorithm consists of a scoring function to rank tracks and an iterative algorithm that searches for the highest scoring tracks, in a computationally efficient way, using the Viterbi algorithm.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012