By Topic

Image segmentation with background correction using a multiplicative smoothing-spline model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Madani, R. ; Biomed. Imaging Group, Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Bourquard, A. ; Unser, M.

This paper presents an image-segmentation method which compensates multiplicative distortions based on smooth regularity assumptions. In this work, we generalize the original Chan-Vese functional to handle a continuous multiplicative bias. In the derivation of our model, we show that the optimal correction function is necessarily a spline, which we express in terms of discrete coefficients. Following an iterative technique, we propose to find the solution by an alternate optimization of this map and of the segmented domains. In order to maximize the overall efficiency, graph cuts are combined with a specifically designed multigrid algorithm. Our experiments demonstrate the relevance of our approach for biomedical data.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012