Cart (Loading....) | Create Account
Close category search window
 

The Parallel Kalman Filter: An efficient tool to deal with real-time non central χ noise correction of HARDI data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Brion, V. ; I2BM, NeuroSpin, CEA, Gif-sur-Yvette, France ; Riff, O. ; Descoleaux, M. ; Mangiri, J.-F.
more authors

We propose a novel real-time non central χ (nc-χ) noise correction method for diffusion-weighted MR data that are known to be particularly sensitive to noise, especially at high b-values. This technique aims to be real-time during the acquisition to get any map stemming from the Diffusion Tensor Imaging (DTI) and the High Angular Resolution Diffusion Imaging (HARDI) models corrected from nc-χ noise. The method is based on a Parallel Kalman Filter which is well adapted for non-Gaussian noise distributions, and which is as suitable for real time purposes as the standard Kalman filter (KF). The results on simulated and real HARDI data show that it outperforms the standard KF approach since non-Gaussian noise distributions are directly embedded in the process through their Gaussian mixture approximation.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.