Cart (Loading....) | Create Account
Close category search window

Modeling a monolithic silicon carbide pintle rocket injector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ginn, D. ; Dept. of Phys. & Astron., Univ. of Texas at San Antonio, San Antonio, TX, USA ; Ayon, A.A.

A monolithic silicon carbide (SiC) pintle rocket injector is under development with the intent to be used in a liquid propellant micro-rocket engine. MATLAB code was developed to determine the rocket's Thrust/Weight ratio, which is critical in maximizing a rocket's efficiency. COMSOL finite element modeling has been used to develop two-dimensional turbulent flow models to simulate the velocity flows coming from the radial and axial orifices of the injector. Three-dimensional turbulent flow models were also developed to study the axial and radial flows independently. Using these models, the velocity of the flows through the axial and radial orifices were determined based on a given inlet pressure. Two designs were chosen for the axial chamber. Both designs were tested for the velocity flow speed and the uniformity of the flow through the axial ring. Based on these models a suitable inlet pressure was chosen and fed into a set of three-dimensional solid mechanics models to study the stresses in the injector walls. Models indicated significant stresses around the axial orifice, and this was drastically reduced by adding several columns to reinforce the axial fuel chamber of the injector with a minimal change of flow characteristics. These models will serve as a guide in the batch production of pintle injectors on a silicon substrate.

Published in:

Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2012 Symposium on

Date of Conference:

25-27 April 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.