Cart (Loading....) | Create Account
Close category search window
 

High-quality surface passivation of silicon using native oxide and silicon nitride layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chowdhury, Z.R. ; Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada ; Cho, Kevin ; Kherani, N.P.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4733336 

We report on the attainment of high quality surface passivation of crystalline silicon using facile native oxide and plasma enhanced chemical vapour deposition SiNx. Using systematic measurements of excess carrier density dependent minority carrier lifetime, it is observed that the inferred interface defect density decreases with increasing native oxide thickness while the interface charge density remains unchanged with thickness, which ranges from 0.2 Å to 10 Å. A surface recombination velocity of 8 cm/s is attained corresponding to a native oxide layer thickness of ∼10 Å. Similar chemically grown oxide layer followed by SiNx deposition is shown to yield comparable passivation, indicating practical viability of the passivation scheme.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 2 )

Date of Publication:

Jul 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.