By Topic

Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Dingemans, Gijs ; Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ; Kessels, E.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.4728205 

The reduction in electronic recombination losses by the passivation of silicon surfaces is a critical enabler for high-efficiency solar cells. In 2006, aluminum oxide (Al2O3) nanolayers synthesized by atomic layer deposition (ALD) emerged as a novel solution for the passivation of p- and n-type crystalline Si (c-Si) surfaces. Today, high efficiencies have been realized by the implementation of ultrathin Al2O3 films in laboratory-type and industrial solar cells. This article reviews and summarizes recent work concerning Al2O3 thin films in the context of Si photovoltaics. Topics range from fundamental aspects related to material, interface, and passivation properties to synthesis methods and the implementation of the films in solar cells. Al2O3 uniquely features a combination of field-effect passivation by negative fixed charges, a low interface defect density, an adequate stability during processing, and the ability to use ultrathin films down to a few nanometers in thickness. Although various methods can be used to synthesize Al2O3, this review focuses on ALD—a new technology in the field of c-Si photovoltaics. The authors discuss how the unique features of ALD can be exploited for interface engineering and tailoring the properties of nanolayer surface passivation schemes while also addressing its compatibility with high-throughput manufacturing. The recent progress achieved in the field of surface passivation allows for higher efficiencies of industrial solar cells, which is critical for realizing lower-cost solar electricity in the near future.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:30 ,  Issue: 4 )