By Topic

A MapReduce based Ant Colony Optimization approach to combinatorial optimization problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bihan Wu ; Sch. of Comput. Sci. & Eng., Southeast Univ., Nanjing, China ; Gang Wu ; Mengdong Yang

Ant Colony Optimization (ACO) is a kind of meta-heuristics algorithm, which simulates the social behavior of ants and could be a good alternative to existing algorithms for NP hard combinatorial optimization problems, like the 0-1 knapsack problem and the Traveling Salesman Problem (TSP). Although ACO can get solutions that are quite near to the optimal solution, it still has its own problems. Premature bogs the system down in a locally optimal solution rather than the global optimal one. To get better solutions, it requires a larger number of ants and iterations which consume more time. Parallelization is an effective way to solve large-scale ant colony optimization algorithms over large dataset. We propose a MapReduce based ACO approach. We show how ACO algorithms can be modeled into the MapReduce framework. We describe the algorithm design and implementation of ACO on Hadoop.

Published in:

Natural Computation (ICNC), 2012 Eighth International Conference on

Date of Conference:

29-31 May 2012