By Topic

An analysis of the folded waveguide: a compact waveguide launcher for ICRF heating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. M. Jost ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; J. E. Scharer

Theoretical and experimental investigations of the folded waveguide launcher as proposed for use in the ion-cyclotron range of frequencies (ICRF) heating of tokamak plasmas are presented. Theoretical results include an analysis of the folded waveguide using Ritz's method to obtain various field quantities. The cutoff wavenumbers from this analysis are within 10% of those calculated using an unfolded equivalent rectangular waveguide model. Measurements of cavity resonances for a scale-model ICRF-folded waveguide with a cutoff frequency of 2.4 GHz also agree closely with those calculated using an unfolded equivalent model. An unfolded equivalent waveguide model is used to evaluate the properties of an inductive strip placed in the folded waveguide. Applying variational analyses provides upper and lower bounds to the reflection magnitude |S11| that are in good agreement with measured values. Polarizing plates (which have been proposed to increase the on-axis directivity of the radiated power) are modeled using an unfolded equivalent waveguide. A variational analysis is used to determine an upper-bound value of |S11| in air due to a polarizing plate inside a matched folded waveguide. Measured values are found to be within 3% of the calculated values, with |S11|>0.95 for frequencies between 2.5 and 4.5 GHz

Published in:

IEEE Transactions on Plasma Science  (Volume:18 ,  Issue: 5 )