By Topic

Triggered discharges with high arc voltages in a vacuum interrupter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Gebel ; Siemens AG, Erlangen, West Germany ; D. Falkenberg

Studies of nonsustained disruptive discharges (NSDDs), isolated cases of which can occur in vacuum interrupters, indicate lateral discharges between the cathode and shield, which can initiate a brief discharge between the contacts. To facilitate the study of such discharges, the sample discharges were triggered by a surface discharge induced by a spark gap, built into the side of the cathode, and observed with a high-speed film camera and image-converter camera. The tests showed a cathode spot after igniting. The emitted electrons first charge the shield negatively and then are directed toward the anode. The discharge burns at a high voltage, with current ranging from 10 to 100 A. After a period of up to 400 μs, the current demand increases abruptly; an arc discharge occurs between the contacts and discharges the capacitances near the switch. The contact gap undergoes a rapid dielectric recovery, and the restored voltage is maintained. These types of discharge were also observed with NSDDs; thus it can be assumed that the triggered discharges studied correspond to the NSDD type

Published in:

IEEE Transactions on Plasma Science  (Volume:18 ,  Issue: 5 )