By Topic

A review of microelectronic film deposition using direct and remote electron-beam-generated plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu, Zengqi ; Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA ; Luo, Z. ; Sheng, T.Y. ; Zarnani, H.
more authors

Soft-vacuum-generated electron beams employed to create a large-area plasma for assisting chemical vapor deposition (CVD) of thin films are reviewed. The electron-beam plasma is used directly, where electron-impact dissociation of feedstock gases plays a dominant role, and indirectly in a downstream afterglow, where electron-impact dissociation of feedstock reactants plays no role. Photodissociation and metastable atom-molecule reactions dominate in the downstream afterglow. The transmitted beam spatial-intensity profiles are quantified from initial generation at a slotted line-shaped cold cathode through acceleration in the cathode sheath and propagation in the ambient gas. The vacuum ultraviolet (VUV) output spectrum and VUV generation efficiency from electron-beam-excited plasmas are measured. The properties of films deposited by direct electron-beam-generated plasma-assisted CVD and downstream afterglow CVD are reviewed and compared to conventional plasma-assisted CVD films

Published in:

Plasma Science, IEEE Transactions on  (Volume:18 ,  Issue: 5 )