Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Transfer learning based on graph ranking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiana Meng ; Sch. of Comput. Sci. & Technol., Dalian Univ. of Technol., Dalian, China ; Hongfei Lin

A fundamental assumption in machine learning is that the data distributions of the training and the test sets should be identical. When the assumption does not hold, the traditional machine learning algorithms might perform worse. In this paper, we tackle this transfer learning problem by implementing a general graph ranking framework for a sentiment classification task. We construct a fusion graph model by using the in-domain and the out-of-domain data. The in-domain data can help us to get pseudo labels of the out-of-domain data. The out-of-domain data can help us to update the labels and can get the convincing prediction labels. Experimental results show the significant improvements in accuracy and demonstrate the effectiveness of this algorithm.

Published in:

Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on

Date of Conference:

29-31 May 2012