By Topic

Heat Kernels for Non-Rigid Shape Retrieval: Sparse Representation and Efficient Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mostafa Abdelrahman ; Comput. Vision & Image Process. Lab., Univ. of Louisville, Louisville, KY, USA ; Moumen El-Melegy ; Aly Farag

One of the major goals of computer vision and machine intelligence is the development of flexible and efficient methods for shape representation. This paper presents an approach for shape retrieval based on sparse representation of scale-invariant heat kernel. We use the Laplace-Beltrami eigen functions to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales, combined with the normalized eigen values of the Lap lace-Beltrami operator. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the collaborative representation-based classification with regularized least square algorithm. We compare our approach to two well-known approaches on two different data sets: the nonrigid world data set and the SHREC 2011. The results have indeed confirmed the improved performance of the proposed approach, yet reducing the time and space complicity of the shape retrieval problem.

Published in:

Computer and Robot Vision (CRV), 2012 Ninth Conference on

Date of Conference:

28-30 May 2012