Cart (Loading....) | Create Account
Close category search window

PEGUS: An Image-Based Robust Pose Estimation Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mehta, S.S. ; Dept. of Mech. & Aerosp. Eng., Univ. of Florida, Gainesville, FL, USA ; Barooah, P. ; Dixon, W.E. ; Pasiliao, E.L.
more authors

In this paper, a robust pose (i.e., position and orientation) estimation algorithm using two-views captured by a calibrated monocular camera is presented. A collection of pose hypotheses is obtained when more than the minimum number of feature points required to uniquely identify a pose are available in both the images. The pose hypotheses - unit quaternion and unit translation vectors - lie on the S3 and S2 manifolds in the Euclidean 4-space and 3-space, respectively. Probability density function (pdf) of the rotation and translation pose hypotheses is evaluated by gridding the unit spheres where a robust, coarse pose estimate is identified at the mode of the pdf. Further, a "refining" pdf of the geodesic distance from the coarse pose estimate is constructed for the hypotheses within a grid containing the coarse estimate. A refined pose estimate is obtained by averaging the low-noise hypotheses in the neighbourhood of the mode of refining pdf. Pose estimation results of the proposed method are compared with RANSAC and nonlinear mean-shift (NMS) algorithms using the Oxford Corridor sequence and the robustness to feature outliers, image noise rejection, and scalability to number of features is analyzed using the synthetic data experiments. Processing time comparison with the RANSAC and NMS algorithms indicate that the deterministic time requirement of the proposed and NMS algorithms is amenable to a variety of visual servo control applications.

Published in:

Computer and Robot Vision (CRV), 2012 Ninth Conference on

Date of Conference:

28-30 May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.