By Topic

Planar Segmentation of RGBD Images Using Fast Linear Fitting and Markov Chain Monte Carlo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Erdogan, C. ; Sch. of Interactive Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Paluri, M. ; Dellaert, F.

With the advent of affordable RGBD sensors such as the Kinect, the collection of depth and appearance information from a scene has become effortless. However, neither the correct noise model for these sensors, nor a principled methodology for extracting planar segmentations has been developed yet. In this work, we advance the state of art with the following contributions: we correctly model the Kinect sensor data by observing that the data has inherent noise only over the measured disparity values, we formulate plane fitting as a linear least-squares problem that allow us to quickly merge different segments, and we apply an advanced Markov Chain Monte Carlo (MCMC) method, generalized Swendsen-Wang sampling, to efficiently search the space of planar segmentations. We evaluate our plane fitting and surface reconstruction algorithms with simulated and real-world data.

Published in:

Computer and Robot Vision (CRV), 2012 Ninth Conference on

Date of Conference:

28-30 May 2012