By Topic

LatLong: Diagnosing Wide-Area Latency Changes for CDNs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Minimizing user-perceived latency is crucial for Content Distribution Networks (CDNs) hosting interactive services. Latency may increase for many reasons, such as interdomain routing changes and the CDN's own load-balancing policies. CDNs need greater visibility into the causes of latency increases, so they can adapt by directing traffic to different servers or paths. In this paper, we propose a tool for CDNs to diagnose large latency increases, based on passive measurements of performance, traffic, and routing. Separating the many causes from the effects is challenging. We propose a decision tree for classifying latency changes, and determine how to distinguish traffic shifts from increases in latency for existing servers, routers, and paths. Another challenge is that network operators group related clients to reduce measurement and control overhead, but the clients in a region may use multiple servers and paths during a measurement interval. We propose metrics that quantify the latency contributions across sets of servers and routers. Based on the design, we implement the LatLong tool for diagnosing large latency increases for CDN. We use LatLong to analyze a month of data from Google's CDN, and find that nearly 1% of the daily latency changes increase delay by more than 100 msec. Note that the latency increase of 100 msec is significant, since these are daily averages over groups of clients, and we only focus on latency-sensitive traffic for our study. More than 40% of these increases coincide with interdomain routing changes, and more than one-third involve a shift in traffic to different servers. This is the first work to diagnose latency problems in a large, operational CDN from purely passive measurements. Through case studies of individual events, we identify research challenges for managing wide-area latency for CDNs.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:9 ,  Issue: 3 )