By Topic

Dual-Mode Ring Resonator Bandpass Filter With Asymmetric Inductive Coupling and Its Miniaturization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsu-Wei Lin ; Institute of Communications Engineering, National Chiao Tung University, Hsinchu, Taiwan ; Jen-Tsai Kuo ; Shyh-Jong Chung

Dual-mode ring resonator filters are implemented with asymmetric inductive perturbation for creating transmission zeros on both sides of the passband. In analysis, dependence of the resonance modes and the zeros on positions and sizes of both the inductive and capacitive perturbations is investigated. Under certain conditions, the even- and odd-mode frequencies for a capacitively perturbed ring are the same as the odd and even ones, respectively, for a ring with inductive perturbation. Theoretical background is clearly explained how the two transmission zeros are split up from the center frequency. Two dual-mode ring resonator filters are fabricated and measured for demonstration. To obtain a miniaturized circuit area, the 1-λ ring trace is folded into a double-ring or spiral configuration. The inductive perturbation is chosen as the crossover and implemented by a short high-impedance coplanar waveguide interconnection in the ground plane of the microstrip. Measurement results show good agreement with the simulation responses.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 9 )