By Topic

A comparative design and tuning for conventional fuzzy control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Han-Xiong Li ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, Hong Kong

A new methodology is introduced for designing and tuning the scaling gains of the conventional fuzzy logic controller (FLC) based on its well-tuned linear counterpart. The conventional FLC with a linear rule base is very similar to its linear counterpart. The linear three-term controller has proportional, integral and/or derivative gains. Similarly, the conventional fuzzy three-term controller also has fuzzy proportional, integral and/or derivative gains. The new concept “fuzzy transfer function” is invented to connect these fuzzy gains with the corresponding scaling gains. The comparative gain design is presented by using the gains of the well-tuned linear counterpart as the initial fuzzy gains of the conventional FLC. Furthermore, the relationship between the scaling gains and the performance can be deduced to produce the comparative tuning algorithm, which can tune the scaling gains to their optimum by less trial and error. The performance comparison in the simulation demonstrates the viability of the new methodology

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )