By Topic

Methodology of evaluating the influence of the resistance of contact regions in the measurements of sheet resistance on stripes of ultrathin high-resistance materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nahlik, Josef ; Department of Solid State Engineering, Institute of Chemical Technology, Prague, 16628, Czech Republic ; Kasparkova, Irena ; Fitl, Premysl

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The paper reviews the problems of measurement of sheet resistance of ultrathin high-resistance layers of organic semiconductors and the essential underlying problems. Particular attention is paid to potential influence of the resistance of contact regions on the results of direct measurement of sheet resistance of stripe-shaped layers. In this connection, we present a methodology of double length stripe resistance measurement (DLSRM), used above all to minimise the influence of contact regions on the measurement results. We deduce theoretical as well as practical possibilities of DLSRM in the diagnostics and quantitative characterisation of unsuitable or even faulty contacts on high-resistance layers. The application efficiency of the DLSRM method is documented by the results of sheet resistance measurement on zinc phthalocyanine with cathode sputtered planar contacts of noble metals (gold, platinum, or palladium). As expected, gold is the best contact material, but even in its application one cannot neglect the influence of contact regions. The presented method is universal and generally applicable to all materials where sheet resistance is the relevant parameter, and its assessment is based on measurements of the layer resistance in stripe arrangement.

Published in:

Review of Scientific Instruments  (Volume:83 ,  Issue: 7 )