By Topic

Adaptive position/force control of robot manipulators without velocity measurements: theory and experimentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
de Queiroz, M.S. ; Dept. of Electr. & Comput. Eng., Clemson Univ., SC, USA ; Jun Hu ; Dawson, D.M. ; Burg, T.
more authors

In this paper, we design an adaptive position/force controller for robot manipulators during constrained motion. The proposed controller can compensate for parametric uncertainty while only requiring measurements of link position and end-effector force. A filtering technique is utilized to produce a pseudo-velocity error signal and thus, eliminate the need for link velocity measurements. The control strategy provides semiglobal asymptotic tracking performance for the end-effector position and the interaction force between the constraint and the end-effector. An experimental implementation of the proposed controller on a two-link planar robot is also presented

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )