By Topic

Multiple-vehicle longitudinal collision avoidance and impact mitigation by active brake control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao-Yun Lu ; PATH, U. C. Berkeley, Richmond Field Station, Bldg 452, 1357 S. 46th Street, Richmond, CA 94804 ; Jianqiang Wang

This paper proposes a control strategy for multiple-vehicle longitudinal collision avoidance or impact minimization if it is unavoidable. The system is defined as a coupled group of vehicles with vehicle-to-vehicle communication (V2V) in short enough distance following. The relationships with the further front and/or rear vehicle without V2V has been taken into account, which are modeled as lower bound limit on deceleration of the first vehicle and upper bound on maximum deceleration of the last vehicle in the system. The objective is to determine the desired deceleration for each vehicle such that the total impact of the system is minimized at each time step. The impact is defined as the relative kinetic energy between a pair of vehicles. The optimal control problem is further simplified as a finite time horizon predictive control (MPC), which is a quadratic programming problem. Simulation in Matlab shows some interesting results. The algorithm can be applied to vehicles with automated brake control capabilities with progressive market penetration of V2V.

Published in:

Intelligent Vehicles Symposium (IV), 2012 IEEE

Date of Conference:

3-7 June 2012