By Topic

Visual odometry based on Random Finite Set Statistics in urban environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Feihu Zhang ; Tech. Univ. Munchen, Garching bei München, Germany ; Guang Chen ; Stahle, H. ; Buckl, C.
more authors

This paper presents a novel approach for estimating the vehicle's trajectory in complex urban environments. In previous work, we presented a visual odometry solution that estimates frame-to-frame motion from a single camera based on Random Finite Set (RFS) Statistics. This paper extends that work by combining the stereo cameras and gyroscope sensor. We are among the first to apply RFS statistics to visual odometry in real traffic scenes. The method is based on two phases: a preprocessing phase to extract features from the image and transform the coordinates from the image space to vehicle coordinates; a tracking phase to estimate the egomotion vector of the camera. We consider features as a group target and use the Probability Hypothesis Density (PHD) filter to update the overall group state as the motion vector. Compared to other approaches, our method presents a recursive filtering algorithm that provides dynamic estimation of multiple-targets states in the presence of clutter and high association uncertainty. The experimental results show that this method exhibits good robustness under various scenarios.

Published in:

Intelligent Vehicles Symposium (IV), 2012 IEEE

Date of Conference:

3-7 June 2012