Cart (Loading....) | Create Account
Close category search window

Sequential linear interpolation of multidimensional functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, J.Z. ; Color Savvy Syst. Inc., Springboro, OH, USA ; Allebach, J.P. ; Bouman, C.A.

We introduce a new approach that we call sequential linear interpolation (SLI) for approximating multidimensional nonlinear functions. The SLI is a partially separable grid structure that allows us to allocate more grid points to the regions where the function to be interpolated is more nonlinear. This approach reduces the mean squared error (MSE) between the original and approximated function while retaining much of the computational advantage of the conventional uniform grid interpolation. To obtain the optimal grid point placement for the SLI structure, we appeal to an asymptotic analysis similar to the asymptotic vector quantization (VQ) theory. In the asymptotic analysis, we assume that the number of interpolation grid points is large and the function to be interpolated is smooth. Closed form expressions for the MSE of the interpolation are obtained from the asymptotic analysis. These expressions are used to guide us in designing the optimal SLI structure. For cases where the assumptions underlying the asymptotic theory are not satisfied, we develop a postprocessing technique to improve the MSE performance of the SLI structure. The SLI technique is applied to the problem of color printer characterization where a highly nonlinear multidimensional function must be efficiently approximated. Our experimental results show that the appropriately designed SLI structure can greatly improve the MSE performance over the conventional uniform grid

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 9 )

Date of Publication:

Sep 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.