By Topic

Design Optimization of Pulsed-Mode Electromechanical Nonvolatile Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pott, V. ; Inst. of Microelectron., Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore ; Vaddi, R. ; Geng Li Chua ; Lin, J.T.M.
more authors

Storage-layer-based nonvolatile memory (NVM) devices, such as Flash, ferroelectric RAM, or magnetic RAM, have limited reliability at high temperature (HT, T >; 200°C). On the contrary, storage-layer-free NVM devices based on a bistable nanoelectromechanical (NEM) mechanism and adhesion forces show excellent reliability at HT. This letter presents design optimization of an electrostatic NEM NVM device. The set/ reset principle is based on the pulsed-mode switching of a mechanically free electrode (the shuttle), which is placed inside a guiding pod, having two stable positions. Based on the shuttle kinematic equation, this letter derives key design and operation parameters, particularly optimization in terms of switching speed and switching energy. The small footprint of the shuttle NEM NVM makes it applicable to ultracompact and reliable data storage at HT.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 8 )