Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Tradeoff between source and channel coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hochwald, B. ; Bell Labs., Lucent Technol., Murray Hill, NJ, USA ; Zeger, K.

A fundamental problem in the transmission of analog information across a noisy discrete channel is the choice of channel code rate that optimally allocates the available transmission rate between lossy source coding and block channel coding. We establish tight bounds on the channel code rate that minimizes the average distortion of a vector quantizer cascaded with a channel coder and a binary-symmetric channel. Analytic expressions are derived in two cases of interest: small bit-error probability and arbitrary source vector dimension; arbitrary bit-error probability and large source vector dimension. We demonstrate that the optimal channel code rate is often substantially smaller than the channel capacity, and obtain a noisy-channel version of the Zador (1982) high-resolution distortion formula

Published in:

Information Theory, IEEE Transactions on  (Volume:43 ,  Issue: 5 )