By Topic

A practical method for approaching the channel capacity of constrained channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schouhamer Immink, Kees A. ; Philips Res. Lab., Eindhoven, Netherlands

A new coding technique is proposed that translates user information into a constrained sequence using very long codewords. Huge error propagation resulting from the use of long codewords is avoided by reversing the conventional hierarchy of the error control code and the constrained code. The new technique is exemplified by focusing on (d, k)-constrained codes. A storage-effective enumerative encoding scheme is proposed for translating user data into long dk sequences and vice versa. For dk runlength-limited codes, estimates are given of the relationship between coding efficiency versus encoder and decoder complexity. We show that for most common d, k values, a code rate of less than 0.5% below channel capacity can be obtained by using hardware mainly consisting of a ROM lookup table of size 1 kbyte. For selected values of d and k, the size of the lookup table is much smaller. The paper is concluded by an illustrative numerical example of a rate 256/466, (d=2, k=15) code, which provides a serviceable 10% increase in rate with respect to its traditional rate 1/2, (2, 7) counterpart

Published in:

Information Theory, IEEE Transactions on  (Volume:43 ,  Issue: 5 )