Cart (Loading....) | Create Account
Close category search window
 

Fabrication of semiconducting YBaCuO surface-micromachined bolometer arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Travers, C.M. ; Dept. of Electr. Eng., Southern Methodist Univ., Dallas, TX, USA ; Jahanzeb, A. ; Butler, D.P. ; Celik-Butler, Z.

Thermal infrared detectors require thermal isolation to permit the infrared-sensitive material to integrate the incident photon energy and thereby obtain high responsivity and detectivity. This paper describes the fabrication of semiconducting YBaCuO microbolometer arrays into thermal isolation structures by employing Si surface-micromachining techniques. An isotropic HF:HNO3 etch was used to remove the underlying Si substrate from the front-side of the wafer and suspend SiO 2 membranes into 1×10 pixel-array structures. The infrared-sensitive material, YBaCuO, was subsequently deposited onto the thermal isolation structures and patterned to form the detector arrays. The high-temperature coefficient of resistance and low noise of semiconducting YBaCuO at room temperature is attractive for uncooled infrared detection. The fabrication process was conducted entirely at room temperature. In this manner, infrared detectors are fabricated in a process that is compatible with CMOS technology to allow for the integration with on-chip signal processing circuitry. The end result is low-cost infrared-detector arrays for night vision in a variety of applications including transportation and security. Preliminary results show a temperature coefficient of resistance above 3%, voltage responsivity close to 104 V/W, and detectivity over 107 cm·Hz1/2/W at a bias current of 0.79 μA

Published in:

Microelectromechanical Systems, Journal of  (Volume:6 ,  Issue: 3 )

Date of Publication:

Sep 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.