Cart (Loading....) | Create Account
Close category search window

Manifold learning-based automatic signal identification in cognitive radio networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Adaptive signal identification has been an important issue in cognitive radio networks (CRNs). Most existing techniques require high-level signal-to-noise ratio (SNR) for signal identification. This study presents an intelligent technique that focuses on a theoretical and experimental study of the signal identification by using manifold learning algorithm in CRNs. The authors pose the problem of signal identification in CRNs as signal classification by using manifold learning on high dimensions, and a novel manifold learning algorithm named as SIEMAP is proposed, which is able to identify signals in a low-dimensional space. Simulation results indicate that SIEMAP outperforms classical methods in low dimensions and is capable of identifying signal types from the received signals.

Published in:

Communications, IET  (Volume:6 ,  Issue: 8 )

Date of Publication:

May 22 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.