Cart (Loading....) | Create Account
Close category search window
 

Systems with finite communication bandwidth constraints. I. State estimation problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wing Shing Wong ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong ; Brockett, R.W.

In this paper, we investigate a state estimation problem involving finite communication capacity constraints. Unlike classical estimation problems where the observation is a continuous process corrupted by additive noises, there is a constraint that the observations must be coded and transmitted over a digital communication channel with finite capacity. This problem is formulated mathematically, and some convergence properties are defined. Moreover, the concept of a finitely recursive coder-estimator sequence is introduced. A new upper bound for the average estimation error is derived for a large class of random variables. Convergence properties of some coder-estimator algorithms are analyzed. Various conditions connecting the communication data rate with the rate of change of the underlying dynamics are established for the existence of stable and asymptotically convergent coder-estimator schemes

Published in:

Automatic Control, IEEE Transactions on  (Volume:42 ,  Issue: 9 )

Date of Publication:

Sep 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.