By Topic

Three-DOF Microrobotic Platform Based on Capillary Actuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cyrille Lenders ; Department of Bio-, Electro-, and Mechanical Systems, Université libre de Bruxelles, 1050 Bruxelles, Belgium ; Michaël Gauthier ; Rémi Cojan ; Pierre Lambert

This paper presents a new microrobotic platform actuated by capillary effects, combining surface tension and pressure effects. The device has 6 degrees of freedom (DOFs), among which, three are actuated: the z-axis translation having a stroke of a few hundreds of microns and θx and θy tilting up to about 15°. The platform is submerged in a liquid and placed on microbubbles whose shapes (e.g., height) are driven by fluidic parameters (pressure and volume). The modeling of this new type of compliant robot is described and compared with experimental measurements. This paper paves the way for an interesting actuation and robotic solution for submerged devices on the microscale.

Published in:

IEEE Transactions on Robotics  (Volume:28 ,  Issue: 5 )