By Topic

Observations of Storm Signatures by the Recently Modified Conical Scanning Millimeter-Wave Imaging Radiometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wang, J.R. ; Sci. Syst. & Applic. Inc., Greenbelt, MD, USA ; Skofronick-Jackson, G.M. ; Schwaller, M.R. ; Johnson, C.M.
more authors

The Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) is an airborne total-power radiometer that, after the recent modification, measures radiation at the nine frequencies of 50.3, 52.8, 89 (dual-polarized), 165 (dual-polarized), 183.3 ± 1, 183.3 ± 3, and 183.3 ± 7 GHz. During the Mid-latitude Continental Convective Clouds Experiment of April 22-June 1, 2011, it is programmed to acquire radiometric measurements in both conical and cross-track scans nearly simultaneously. Its new capability of measuring scattering signatures from storm-associated hydrometeors in dual polarization at both 89 and 165 GHz is illustrated and reported in this paper. We find that, from all seven flights over stratiform rain and convective storms, the polarization index (PI), is small but definitively positive at both frequencies, and generally (89 GHz) ≤ PI(165 GHz). When brightness temperatures Tbps are ≥ 240 K, there is a significant correlation between PIand the brightness difference between the two frequencies (dTbp = Tbp(89) - Tbp(165) , where p is either vertical V or horizontal H polarization); linear regression between these two parameters gives positive slopes for all seven events, with 165-GHz slopes generally larger the 89-GHz ones. Observations from five special sensor microwave imager/sounder passes in near concurrence with the CoSMIR measurements are examined for the relation between PI(91.665 GHz) and dTbh (91.665 GHz-150 GHz). The regression slopes are again found to be positive, and their magnitudes show some correspondence to those of CoSMIR. The significance of these findings to improvement in the parameter retrievals of hydrometeors is briefly discussed.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 1 )