By Topic

MSE behaviour of biomedical event-related filters [impedance cardiography application]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barros, A.K. ; Dept. of Inf. Eng., Nagoya Univ., Japan ; Ohnishi, N.

The mean-squared error (MSE) behaviour for Fourier linear combiner (FLC)-based filters is analyzed, using the independence assumption. The advantage of this analysis is its simplicity compared with previous results. The MSE transient behaviour for this kind of filters is also presented for the first time. Moreover, a time-varying sequence for the least mean square (LMS) algorithm step-size is proposed to provide fast convergence with small misadjustment error. It is shown that for this sequence, the MSE behaves better as the input signal-to-noise ratio (SNR) decreases, but increases with the number of harmonics. Lastly, the authors make a brief analysis on the nonstationary behaviour of these filters, and again they find simple expressions for the MSE behaviour.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:44 ,  Issue: 9 )