Cart (Loading....) | Create Account
Close category search window
 

Analysis of electromagnetic scattering from an object above rough surface by using characteristic basis functions and ACA scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yuyuan An ; Dept. of Commun. Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China ; Quanquan Wang ; Guangli Yu ; Dazhi Ding
more authors

A fast algorithm is proposed to calculate the difference field RCS (d-RCS) of the electromagnetic scattering from an object above rough surface. The electric field integral equation (EFIE) of the difference induced field on the rough surface and the induced field on the target are derived, and is solved by an iterative solver. The characteristic basis functions (CBFs) are used to calculate the induced field on the rough surface, which is part of the right-hand side of the system. Since the coupling matrices between the object and rough surface and the non-self interaction matrices of the rough surface are rank deficient, it is accelerated by the adaptive cross approximation (ACA) algorithm. Through numerical experiments, it is concluded that the proposed method is efficient in analyzing the electromagnetic scattering from an object above rough surface.

Published in:

Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on  (Volume:2 )

Date of Conference:

5-8 May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.