Cart (Loading....) | Create Account
Close category search window

A 79 GHz sub-harmonic mixer design using a 1 um InP DHBT technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiaoxi Ning ; Inst. of Microelectron., Beijing, China ; Hongfei Yao ; Yongbo Su ; Xiantai Wang
more authors

This paper presents a 79 GHz sub-harmonic mixer (SHM) design based on a self-developed 1 um InP DHBT process. In this design, a low frequency local oscillator (LO) input signal at 39.5 GHz is doubled to W-band and a radio frequency (RF) signal ranging from 80 GHz to 86 GHz is down-converted to the intermediate frequency (IF) band with a best conversion gain around 1 dB at 83 GHz. As the knowledge of authors, it is the first attempt to implement an InP DHBT based SHM with a LO doubler in W-band. Due to lacking of available RF sources, the testing is realized with one port of an output power fixed Vector Network Analyzer enhanced by a frequency up-conversion module.

Published in:

Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on  (Volume:2 )

Date of Conference:

5-8 May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.