Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

A self-tuning closed-loop flux observer for sensorless torque control of standard induction machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hurst, K.D. ; Georgia Inst. of Technol., Atlanta, GA, USA ; Habetler, T.G. ; Griva, G. ; Profumo, F.
more authors

This paper proposes a self-tuning closed-loop flux observer, which provides field-oriented torque control for induction machines without a tachometer. The proposed algorithm combines the best features of harmonic detection and stator voltage integration through the use of a new tuning scheme. The observer accuracy and robustness is augmented by a parameter-independent accurate-speed detector, which analyzes magnetic saliency harmonics in the stator current. The harmonic-detection scheme provides accurate rotor-speed updates during steady-state operation down to 1-Hz source frequency. This additional speed information is used to tune the rotor-resistance parameter of the observer. The tuned observer exhibits improved dynamic performance, accurate steady-state speed control and an extended range of control near zero speed. The algorithm requires no special machine modifications and can be implemented on most existing low- and medium-performance drives. The closed-loop nature of the flux observer, combined with the harmonic-detection scheme, provides flux and speed error feedback, which significantly increases the robustness of sensorless control across the entire speed range

Published in:

Power Electronics, IEEE Transactions on  (Volume:12 ,  Issue: 5 )