Cart (Loading....) | Create Account
Close category search window

Current–voltage–time characteristics of the reactive Ar/O2 high power impulse magnetron sputtering discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The discharge current–voltage–time waveforms are studied in the reactive Ar/O2 high power impulse magnetron sputtering discharge with a titanium target for 400 μs long pulses. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage and the current increases with decreasing frequency or voltage. The authors attribute this to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as an oxide forms on the target.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:30 ,  Issue: 5 )

Date of Publication:

Sep 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.