Cart (Loading....) | Create Account
Close category search window
 

Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ding, Li ; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China ; Liang, Shibo ; Pei, Tian ; Zhang, Zhiyong
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4731776 

Carbon nanotube (CNT) based integrated circuits (ICs) including basic logic and arithmetic circuits were demonstrated working under a supply voltage low as 0.4 V, which is much lower than that used in conventional silicon ICs. The low limit of supply voltage of the CNT circuits is determined by the degraded noise margin originated from the process inducing threshold voltage fluctuation. The power dissipation of CNT ICs can be remarkably reduced by scaling down the supply voltage, and it is of crucial importance for the further developments of nanoelectronics ICs with higher integration density.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 26 )

Date of Publication:

Jun 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.