By Topic

Dynamic scaling of VoD services into hybrid clouds with cost minimization and QoS guarantee

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xuanjia Qiu ; Dept. of Comput. Sci., Univ. of Hong Kong, Hong Kong, China ; Hongxing Li ; Chuan Wu ; Zongpeng Li
more authors

A large-scale video-on-demand (VoD) service demands huge server costs, to provision thousands of videos to millions of users with high streaming quality. As compared to the traditional practice of relying on large on-premise server clusters, the emerging platforms of geo-distributed public clouds promise a more economic solution: their on-demand resource provisioning can constitute ideal supplements of resources from on-premise servers, and effectively support dynamic scaling of the VoD service at different times. Promising though it is, significant technical challenges persist before it turns into reality: how shall the service provider dynamically replicate videos and dispatch user requests over the hybrid platform, such that the service quality and the minimization of overall cost can be guaranteed over the long run of the system? In this paper, we present a dynamic algorithm that optimally makes decisions on video replication and user request dispatching in a hybrid cloud of on-premise servers and geo-distributed cloud data centers, based on the Lyapunov optimization framework. We rigorously prove that this algorithm can nicely bound the streaming delays within the preset QoS target in cases of arbitrary request arrival patterns, and guarantee that the overall cost is within a small constant gap from the optimum achieved by a T-slot lookahead mechanism with known information into the future. We evaluate our algorithm with extensive simulations under realistic settings, and demonstrate that cost minimization and smooth playback can be achieved in cases of volatile user demands.

Published in:

Packet Video Workshop (PV), 2012 19th International

Date of Conference:

10-11 May 2012