By Topic

Electrostatic discharge thermal failure in semiconductor devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. M. Dwyer ; Dept. of Electron & Electr. Eng., Loughborough Univ. of Technol., UK ; A. J. Franklin ; D. S. Campbell

The problem of calculating for electrostatic discharge (ESD) thermal failure is considered by the thermal convolution integral technique. It is shown that the common assumption that threshold failure occurs after five time constants is unjustified and that the simple average power method for assessing threshold parameters is, consequently, invalid. New expressions for the threshold parameters are presented which retain the simplicity of the average power method, yet represent only a small sacrifice of the accuracy (typically 5%) of more complex methods. In addition, the relaxation of the constraints of a pure Wunsch-Bell damage profile and of an exponentially decaying current pulse is considered

Published in:

IEEE Transactions on Electron Devices  (Volume:37 ,  Issue: 11 )