Cart (Loading....) | Create Account
Close category search window
 

An accurate compact ultrasonic 3D sensor using broadband impulses requiring no initial calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Walter, C. ; Inst. of Electrodynamics, Microwave & Circuit Eng., Vienna Univ. of Technol., Vienna, Austria ; Schweinzer, H.

A compact 3D ultrasonic sensor for scene analysis is presented in this paper. A centered transmitter emits a broadband ultrasonic impulse which is reflected by obstacles in the environment. Reflected waves, if propagated back to the sensor, are then received by four identical ultrasonic microphones. These signals are used to provide polar- and azimuth information based on time difference of arrival and in addition, by using a novel method presented in this paper, sub wavelength accurate distance measurements are possible as well. The used algorithm does not rely on the actual shape of the signal but only on its statistical properties. This is a great achievement because commercially available broadband ultrasonic transducers are typically piston membrane types which exhibit a strong frequency dependent radiation pattern. If measurements are performed outside of the main lobe, not only the signal amplitude is greatly reduced requiring algorithms capable of dealing with a low SNR but also the phase of the signal is affected yielding simple pulse compression techniques useless. The article includes a description of the problem, a comparison to existing systems, a theoretical treatment of the system configuration and experimental results demonstrating the performance of our sensor.

Published in:

Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International

Date of Conference:

13-16 May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.