By Topic

A robust signal detection method for fMRI data under correct Rice conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lauwers, L. ; Dept. ELEC, Vrije Univ. Brussel, Brussels, Belgium ; Barbe, K. ; Van Moer, W.

In this paper, we tackle the problem of signal detection in functional Magnetic Resonance Imaging (fMRI) data by means of a statistical analysis. The main problem of the commonly used statistical tests is that they are based on the assumption that the data are Gaussian distributed, which is only valid for high signal-to-noise ratios (SNRs). Hence, for low SNRs the classical statistical tests are inadequate due to the wrong normality assumption, since it is known from literature that fMRI data follow a Rice distribution. In order to handle both high and low SNRs, we present in this paper a correction for the simplest and most widely used t-test by incorporating the correct Rice conditions. The performance of the Rice-corrected statistical test is shown through simulations and compared with its uncorrected counterpart.

Published in:

Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International

Date of Conference:

13-16 May 2012