By Topic

Stabilization of Stochastic Quantum Dynamics via Open- and Closed-Loop Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ticozzi, F. ; Dipt. di Ing. dell''Inf., Univ. di Padova, Padua, Italy ; Nishio, K. ; Altafini, C.

In this paper, we investigate parametrization-free solutions of the problem of quantum pure state preparation and subspace stabilization by means of Hamiltonian control, continuous measurement, and quantum feedback, in the presence of a Markovian environment. In particular, we show that whenever suitable dissipative effects are induced either by the unmonitored environment, or by non-Hermitian measurements, there is no need for feedback, as open-loop time-invariant control is sufficient to achieve stabilization of the target set in probability. Constructive necessary and sufficient conditions on the form of the control Hamiltonian can be provided in this case. When time-invariant control is not sufficient, state stabilization can be attained by the addition of filtering-based feedback control.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 1 )