By Topic

An Adaptive Contextual SEM Algorithm for Urban Land Cover Mapping Using Multitemporal High-Resolution Polarimetric SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xin Niu ; Division of Geoinformatics, KTH Royal Institute of Technology, Stockholm, Sweden ; Yifang Ban

This paper presents a semi-supervised Stochastic Expectation-Maximization (SEM) algorithm for detailed urban land cover mapping using multitemporal high-resolution polarimetric SAR (PolSAR) data. By applying an adaptive Markov Random Field (MRF) with the spatially variant Finite Mixture Model (SVFMM), spatial-temporal contextual information could be effectively explored to improve the mapping accuracy with homogenous results and preserved shape details. Further, a learning control scheme was proposed to ensure a robust semi-supervised mapping process thus avoiding the undesired class merges. Four-date RADARSAT-2 polarimetric SAR data over the Greater Toronto Area were used to evaluate the proposed method. Common PolSAR distribution models such as Wishart, G0p, Kp and KummerU were compared through this contextual SEM algorithm for detailed urban land cover mapping. Comparisons with Support Vector Machine (SVM) were also conducted to assess the potential of our parametric approach. The results show that the Kp, G0p and KummerU models could generate better urban land cover mapping results than the Wishart model and SVM.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:5 ,  Issue: 4 )