By Topic

In-Network Computation of the Transition Matrix for Distributed Subspace Projection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Insausti, X. ; CEIT, Univ. of Navarra, Donostia-San Sebastian, Spain ; Crespo, Pedro M. ; Beferull-Lozano, B.

In this paper, we develop a novel strategy to compute the transition matrix for the projection problem in a distributed fashion through gossiping in Wireless Sensor Networks. So far, the transition matrix had to be computed off-line by a third party and then provided to the network. The Subspace Projection Problem is useful in various application scenarios (e.g. spectral spatial maps in cognitive radios) and consists of projecting the observed sampled spatial field into a subspace of interest with lower dimension. Although the actual exact computation of the optimal transition matrix is not feasible in a distributed way, we develop an algorithm that is based on well known results from linear algebra and a distributed genetic algorithm in order to compute an approximation of the optimal matrix to a desired precision.

Published in:

Distributed Computing in Sensor Systems (DCOSS), 2012 IEEE 8th International Conference on

Date of Conference:

16-18 May 2012