By Topic

An MCMC Approach to Universal Lossy Compression of Analog Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dror Baron ; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh ; Tsachy Weissman

Motivated by the Markov Chain Monte Carlo (MCMC) approach to the compression of discrete sources developed by Jalali and Weissman, we propose a lossy compression algorithm for analog sources that relies on a finite reproduction alphabet, which grows with the input length. The algorithm achieves, in an appropriate asymptotic sense, the optimum Shannon theoretic tradeoff between rate and distortion, universally for stationary ergodic continuous amplitude sources. We further propose an MCMC-based algorithm that resorts to a reduced reproduction alphabet when such reduction does not prevent achieving the Shannon limit. The latter algorithm is advantageous due to its reduced complexity and improved rates of convergence when employed on sources with a finite and small optimum reproduction alphabet.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 10 )