By Topic

Speckle Noise and Soil Heterogeneities as Error Sources in a Bayesian Soil Moisture Retrieval Scheme for SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Barber, M. ; Inst. de Astron. y Fis. del Espacio (IAFE), Buenos Aires, Argentina ; Grings, F. ; Perna, P. ; Piscitelli, M.
more authors

Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh's model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimization-based procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 3 )