Cart (Loading....) | Create Account
Close category search window
 

Multi-Spectro-Temporal Analysis of Hyperspectral Imagery Based on 3-D Spectral Modeling and Multilinear Algebra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hemissi, S. ; Lab. RIADI, Univ. of Manouba, Manouba, Tunisia ; Farah, I.R. ; Saheb Ettabaa, K. ; Solaiman, B.

Multitemporal hyperspectral images are gaining an ever-increasing importance revealed by the ambition of the remote sensing community to develop new generation of sensors. Therefore, multitemporal images classification and change detection issues are greatly relevant in several research topics. In this paper, we propose a novel approach for modeling the temporal variation of the reflectance response as a function of time period and wavelength; summarizing the spectral signature of hyperspectral pixels as a 3-D mesh. This approach is adopted for hyperspectral time series analysis leading to the main following contribution: an advanced form of the temporal spectral signature defining the reflectance at each pixel as a congregation of the spatial/spectral/temporal dimensions. Afterward, by formulating the temporal data set in an adequate multidimensional feature space of contextual data, an innovative processing scheme exploiting the theoretical backgrounds of 3-D surface reconstruction and matching is adopted for data interpretation. Finally, an improved method for multitemporal endmember extraction and spectral unmixing based on multilinear algebra methods is introduced. A case study, in a region located in southern Tunisia, is conducted on a multitemporal subset of Hyperion images. Up to 89.86% of sampling sites have been correctly predicted by the proposed approach, outperforming conventional classifiers. The good performances obtained, on simulated multitemporal images and over various real experimental scenarios, illustrate the effectiveness and the generalization capacities of the proposed approach.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.