By Topic

On the Exponentially Embedded Family (EEF) Rule for Model Order Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stoica, P. ; Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden ; Babu, P.

Model selection is an important task in many signal processing applications. In this letter, we present a generalized likelihood ratio (GLR)-based derivation of the recently proposed EEF rule in an attempt to cast EEF in the main stream of model order selection approaches and provide further insights into its theoretical foundations. We also show that EEF can be expected to behave asymptotically (in the number of data samples) similarly to the Bayesian information criterion (BIC). To evaluate the finite sample performance we consider two numerical examples, including the selection of the number of components in a Gaussian mixture model (GMM), by means of which we show that EEF behaves similarly to BIC.

Published in:

Signal Processing Letters, IEEE  (Volume:19 ,  Issue: 9 )