By Topic

Analysis and Fabrication of Curved Multimorph Transducers That Undergo Bending and Twisting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pal, S. ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Huikai Xie

Difference in strains in the layers of a multimorph beam causes it to curl, thereby leading to transduction. Straight multimorph beams have been widely used for thermal, piezoelectric, and shape-memory-alloy-based transducers that undergo out-of-plane bending, but curved multimorph beams have not been explored much. In this paper, we report thermal transducers based on curved multimorphs that have a nonzero curvature in the plane of the substrate. The distinguishing feature of curved multimorphs is that they undergo both out-of-plane bending and twisting deformations. We report the small-deformation analysis of curved multimorphs. The analytical expressions greatly expand the design space for microelectromechanical systems engineers and can lead to novel devices, including micromirrors and infrared sensors. The closed-form expressions were validated against finite-element (FE) simulation and experimental results. Experimental verification was done by monitoring a curved electrothermal multimorph beam at different temperatures. Good agreement between the analysis and experiments has been observed in the small-deformation range. At large deformations, in-plane displacement becomes significant. FE simulations and experiments are used to study large deformations.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 5 )