Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Error-Correction Coded Orbital-Angular-Momentum Modulation for FSO Channels Affected by Turbulence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Djordjevic, I.B. ; Electr. & Comput. Eng. Dept., Univ. of Arizona, Tucson, AZ, USA ; Anguita, J.A. ; Vasic, B.

The performance of LDPC-precoded, orbital-angular-momentum (OAM) modulation is studied over a 1-km free-space laser communication link subject to OAM modal crosstalk induced by atmospheric turbulence. The multidimensional signal constellation is designed as the Cartesian product of a one-dimensional non-negative pulse-amplitude modulation and a set of orthogonal OAM modes. We evaluate the performance of this modulation scheme by first determining conditional probability density functions (PDFs) of the modal crosstalk for each symbol, resulting from the propagation in weak turbulence using a numerical propagation model. It is observed that OAM modulation is more sensitive to atmospheric turbulence as the number of dimensions increases. However, this can be efficiently mitigated by an error-correction code. The coded OAM modulation scheme provides an energy-efficient alternative to single-mode transmission, since a larger rate can be obtained per given bandwidth.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 17 )