By Topic

A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hehn, T. ; Dept. of Microsyst. Eng., Univ. of Freiburg, Freiburg, Germany ; Hagedorn, F. ; Maurath, D. ; Marinkovic, D.
more authors

This paper presents a fully autonomous, adaptive pulsed synchronous charge extractor (PSCE) circuit optimized for piezoelectric harvesters (PEHs) which have a wide output voltage range 1.3-20 V. The PSCE chip fabricated in a 0.35 μm CMOS process is supplied exclusively by the buffer capacitor where the harvested energy is stored in. Due to the low power consumption, the chip can handle a minimum PEH output power of 5.7 μW. The system performs a startup from an uncharged buffer capacitor and operates in the adaptive mode at storage buffer voltages from 1.4 V to 5 V. By reducing the series resistance losses, the implementation of an improved switching technique increases the extracted power by up to 20% compared to the formerly presented Synchronous Electric Charge Extraction (SECE) technique and enables the chip efficiency to reach values of up to 85%. Compared to a low-voltage-drop passive full-wave rectifier, the PSCE chip increases the extracted power to 123% when the PEH is driven at resonance and to 206% at off-resonance.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 9 )